While representation learning has been central to the rise of machine learning and artificial intelligence, a key problem remains in making the learnt representations meaningful. For this the typical approach is to regularize the learned representation through prior probability distributions. However such priors are usually unavailable or ad hoc. To deal with this, we propose a dynamics-constrained representation learning framework. Instead of using predefined probabilities, we restrict the latent representation to follow specific dynamics, which is a more natural constraint for representation learning in dynamical systems. Our belief stems from a fundamental observation in physics that though different systems can have different marginalized probability distributions, they typically obey the same dynamics, such as Newton's and Schrodinger's equations. We validate our framework for different systems including a real-world fluorescent DNA movie dataset. We show that our algorithm can uniquely identify an uncorrelated, isometric and meaningful latent representation.
翻译:虽然代言学习是机器学习和人工智能崛起的核心,但在使所学的代言方式有意义方面仍然存在一个关键问题。 典型的做法是通过先前的概率分布使所学的代言方式正规化。 但是,这种前期通常不存在或临时存在。 为了解决这个问题,我们提出了一个动态限制代言学习框架。 我们不使用预先定义的概率,而是限制潜在代言方式,以遵循特定的动态,这是动态系统中代言学习的一个更自然的制约。 我们的信念来自物理学的基本观察,即虽然不同的系统可能具有不同的边缘化概率分布,但它们通常遵循相同的动态,如牛顿和施罗德宁格的方程式。 我们验证了我们不同系统的框架,包括现实世界荧光DNA数据集。 我们显示我们的算法可以独有的识别与不相关、不精确和有意义的潜在代言。