Age of information (AoI), a notion that measures the information freshness, is an essential performance measure for time-critical applications in Internet of Things (IoT). With the surge of computing resources at the IoT devices, it is possible to preprocess the information packets that contain the status update before sending them to the destination so as to alleviate the transmission burden. However, the additional time and energy expenditure induced by computing also make the optimal updating a non-trivial problem. In this paper, we consider a time-critical IoT system, where the IoT device is capable of preprocessing the status update before the transmission. Particularly, we aim to jointly design the preprocessing and transmission so that the weighted sum of the average AoI of the destination and the energy consumption of the IoT device is minimized. Due to the heterogeneity in transmission and computation capacities, the durations of distinct actions of the IoT device are non-uniform. Therefore, we formulate the status updating problem as an infinite horizon average cost semi-Markov decision process (SMDP) and then transform it into a discrete-time Markov decision process. We demonstrate that the optimal policy is of threshold type with respect to the AoI. Equipped with this, a structure-aware relative policy iteration algorithm is proposed to obtain the optimal policy of the SMDP. Our analysis shows that preprocessing is more beneficial in regimes of high AoIs, given it can reduce the time required for updates. We further prove the switching structure of the optimal policy in a special scenario, where the status updates are transmitted over a reliable channel, and derive the optimal threshold. Finally, simulation results demonstrate the efficacy of preprocessing and show that the proposed policy outperforms two baseline policies.


翻译:信息时代(AoI)是衡量信息新鲜度的一种概念,它是一个时间紧迫的IoT系统,它能够预处理传输前的状态更新。特别是,我们的目标是联合设计预处理和传输渠道,以便将目的地平均AoI和IoT设备能源消耗的加权总和最小化。由于传输和计算能力的差异,IoT设备不同行动的时间长度不统一。因此,我们把状况更新问题描述为最佳地平线平均成本半马尔科夫决策程序(SMDP),然后将其转换为离地平时政策升级。我们用最优政策格式展示了最佳政策格式。我们用最优政策格式展示了最优政策格式,我们用最优政策格式展示了最优政策格式,我们用最优政策格式展示了最优政策格式的A。我们用最优政策格式展示了最优政策格式显示最佳政策格式的A。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月5日
Arxiv
0+阅读 · 2021年10月2日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员