Boolean functions are mathematical objects used in diverse domains and have been actively researched for several decades already. One domain where Boolean functions play an important role is cryptography. There, the plethora of settings one should consider and cryptographic properties that need to be fulfilled makes the search for new Boolean functions still a very active domain. There are several options to construct appropriate Boolean functions: algebraic constructions, random search, and metaheuristics. In this work, we concentrate on metaheuristic approaches and examine the related works appearing in the last 25 years. To the best of our knowledge, this is the first survey work on this topic. Additionally, we provide a new taxonomy of related works and discuss the results obtained. Finally, we finish this survey with potential future research directions.
翻译:布尔函数是不同领域使用的数学对象,已经进行了几十年的积极研究。布尔函数在其中发挥重要作用的一个领域是密码学。在那里,大量的需要考虑的设置和加密属性使得寻找新的布尔函数仍是一个非常活跃的领域。在构建适当的布尔函数方面,有若干选择:代数构造、随机搜索和计量经济学。在这项工作中,我们集中研究计量经济学方法,并研究过去25年出现的有关工程。据我们所知,这是关于这个专题的第一次调查。此外,我们提供了相关工程的新分类,并讨论了所取得的结果。最后,我们用潜在的未来研究方向来完成这一调查。