Recent advances in graph-based learning approaches have demonstrated their effectiveness in modelling users' preferences and items' characteristics for Recommender Systems (RSS). Most of the data in RSS can be organized into graphs where various objects (e.g., users, items, and attributes) are explicitly or implicitly connected and influence each other via various relations. Such a graph-based organization brings benefits to exploiting potential properties in graph learning (e.g., random walk and network embedding) techniques to enrich the representations of the user and item nodes, which is an essential factor for successful recommendations. In this paper, we provide a comprehensive survey of Graph Learning-based Recommender Systems (GLRSs). Specifically, we start from a data-driven perspective to systematically categorize various graphs in GLRSs and analyze their characteristics. Then, we discuss the state-of-the-art frameworks with a focus on the graph learning module and how they address practical recommendation challenges such as scalability, fairness, diversity, explainability and so on. Finally, we share some potential research directions in this rapidly growing area.


翻译:以图表为基础的学习方法最近取得的进展表明,在模拟用户偏好和建议系统(RSS)的项目特征方面,它们取得了成效。RSS中的大多数数据可以组织成图表,其中各种对象(例如用户、项目和属性)之间有明示或隐含的联系,并通过各种关系相互影响。以图表为基础的组织为利用图表学习(例如随机行走和网络嵌入)技术的潜在属性提供了益处,以丰富用户和项目节点的表述方式,这是成功建议的一个关键因素。在本文件中,我们对基于图表的学习建议系统(GLRSs)进行了全面调查。具体地说,我们从数据驱动的角度开始,对GLRSs中的各种图表进行系统分类并分析其特征。然后,我们讨论以图表学习模块为重点的最新框架,以及这些框架如何解决诸如可扩展性、公平性、多样性、可解释性等切实可行的建议挑战。最后,我们在这个快速增长的领域分享一些潜在的研究方向。</s>

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2021年6月27日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员