Many believe that the successes of deep learning on image understanding problems can be replicated in the realm of video understanding. However, the span of video action problems and the set of proposed deep learning solutions is arguably wider and more diverse than those of their 2D image siblings. Finding, identifying, and predicting actions are a few of the most salient tasks in video action understanding. This tutorial clarifies a taxonomy of video action problems, highlights datasets and metrics used to baseline each problem, describes common data preparation methods, and presents the building blocks of state-of-the-art deep learning model architectures.


翻译:许多人认为,通过深思熟虑了解图像问题而取得的成功可以在视频理解领域复制,然而,视频行动问题和一系列拟议的深思熟虑解决方案的范围可以说比其2D形象兄弟姐妹的范围更广,而且更加多样化。寻找、识别和预测行动是视频行动理解中最突出的任务之一。这一辅导澄清了视频行动问题的分类,突出了用于为每个问题基线的数据集和衡量标准,描述了共同的数据编制方法,并介绍了最先进的深思熟虑模型结构的组成部分。

1
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
VIP会员
相关VIP内容
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员