We explore the $\textit{average-case deterministic query complexity}$ of boolean functions under the $\textit{uniform distribution}$, denoted by $\mathrm{D}_\mathrm{ave}(f)$, the minimum average depth of zero-error decision tree computing a boolean function $f$. This measure found several applications across diverse fields. We study $\mathrm{D}_\mathrm{ave}(f)$ of several common functions, including penalty shoot-out functions, symmetric functions, linear threshold functions and tribes functions. Let $\mathrm{wt}(f)$ denote the number of the inputs on which $f$ outputs $1$. We prove that $\mathrm{D}_\mathrm{ave}(f) \le \log \frac{\mathrm{wt}(f)}{\log n} + O\left(\log \log \frac{\mathrm{wt}(f)}{\log n}\right)$ when $\mathrm{wt}(f) \ge 4 \log n$ (otherwise, $\mathrm{D}_\mathrm{ave}(f) = O(1)$), and that for almost all fixed-weight functions, $\mathrm{D}_\mathrm{ave}(f) \geq \log \frac{\mathrm{wt}(f)}{\log n} - O\left( \log \log \frac{\mathrm{wt}(f)}{\log n}\right)$, which implies the tightness of the upper bound up to an additive logarithmic term. We also study $\mathrm{D}_\mathrm{ave}(f)$ of circuits. Using H\r{a}stad's switching lemma or Rossman's switching lemma [Comput. Complexity Conf. 137, 2019], one can derive upper bounds $\mathrm{D}_\mathrm{ave}(f) \leq n\left(1 - \frac{1}{O(k)}\right)$ for width-$k$ CNFs/DNFs and $\mathrm{D}_\mathrm{ave}(f) \leq n\left(1 - \frac{1}{O(\log s)}\right)$ for size-$s$ CNFs/DNFs, respectively. For any $w \ge 1.1 \log n$, we prove the existence of some width-$w$ size-$(2^w/w)$ DNF formula with $\mathrm{D}_\mathrm{ave} (f) = n \left(1 - \frac{\log n}{\Theta(w)}\right)$, providing evidence on the tightness of the switching lemmas.


翻译:暂无翻译

0
下载
关闭预览

相关内容

牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
42+阅读 · 2022年2月17日
专知会员服务
21+阅读 · 2021年7月31日
专知会员服务
32+阅读 · 2021年3月7日
【斯坦福大学】矩阵对策的协调方法,89页pdf
专知会员服务
24+阅读 · 2020年9月18日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
141+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
基于深度元学习的因果推断新方法
图与推荐
10+阅读 · 2020年7月21日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
28+阅读 · 2017年12月29日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
68+阅读 · 2022年9月7日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Optimization for deep learning: theory and algorithms
Arxiv
102+阅读 · 2019年12月19日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
VIP会员
相关资讯
基于深度元学习的因果推断新方法
图与推荐
10+阅读 · 2020年7月21日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
28+阅读 · 2017年12月29日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
相关论文
Arxiv
68+阅读 · 2022年9月7日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Optimization for deep learning: theory and algorithms
Arxiv
102+阅读 · 2019年12月19日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员