SLOPE is a popular method for dimensionality reduction in the high-dimensional regression. Indeed some regression coefficient estimates of SLOPE can be null (sparsity) or can be equal in absolute value (clustering). Consequently, SLOPE may eliminate irrelevant predictors and may identify groups of predictors having the same influence on the vector of responses. The notion of SLOPE pattern allows to derive theoretical properties on sparsity and clustering by SLOPE. Specifically, the SLOPE pattern of a vector provides: the sign of its components (positive, negative or null), the clusters (indices of components equal in absolute value) and clusters ranking. In this article we give a necessary and sufficient condition for SLOPE pattern recovery of an unknown parameter of regression coefficients.
翻译:SLOPE是一种在高维回归中降低维度的流行方法,事实上,SLOPE的某些回归系数估计值可以是无效的(平衡的),也可以是绝对值相等的(分组的),因此,SLOPE可以消除无关的预测器,并可以确定对响应矢量具有同样影响的预测器群。SLOPE模式的概念允许通过SLOPE获得关于聚度和聚集的理论属性。具体地说,一个矢量的SLOPE模式提供了:其组成部分的标记(正、负或空)、组群(绝对值相等的成分指数)和组群的排。在本条中,我们为SLOPE模式恢复一个未知的回归系数参数提供了必要和充分的条件。