Recommender Systems (RS), as an efficient tool to discover users' interested items from a very large corpus, has attracted more and more attention from academia and industry. As the initial stage of RS, large-scale matching is fundamental yet challenging. A typical recipe is to learn user and item representations with a two-tower architecture and then calculate the similarity score between both representation vectors, which however still struggles in how to properly deal with negative samples. In this paper, we find that the common practice that randomly sampling negative samples from the entire space and treating them equally is not an optimal choice, since the negative samples from different sub-spaces at different stages have different importance to a matching model. To address this issue, we propose a novel method named Unbiased Model-Agnostic Matching Approach (UMA$^2$). It consists of two basic modules including 1) General Matching Model (GMM), which is model-agnostic and can be implemented as any embedding-based two-tower models; and 2) Negative Samples Debias Network (NSDN), which discriminates negative samples by borrowing the idea of Inverse Propensity Weighting (IPW) and re-weighs the loss in GMM. UMA$^2$ seamlessly integrates these two modules in an end-to-end multi-task learning framework. Extensive experiments on both real-world offline dataset and online A/B test demonstrate its superiority over state-of-the-art methods.


翻译:推荐者系统(RS)是发现用户从一个非常庞大的体积中发现用户感兴趣的物品的有效工具,它吸引了学术界和行业越来越多的关注。在塞族共和国的初始阶段,大规模匹配是根本性的,但具有挑战性。一个典型的配方是学习用户和项目在二塔结构中的表达方式,然后计算两种代表矢量之间的相似性分数,尽管这两种矢量在如何正确处理负面样品方面仍然困难重重。在本文中,我们发现从整个空间抽取负面样品并同等对待这些样品的常见做法不是最佳选择,因为不同阶段的不同子空间的负面样品对匹配模式具有不同的重要性。为了解决这一问题,我们提出了一个叫作“不偏差模型和项目”的新方法。它由两个基本模块组成,其中包括:(1) 通用匹配模型(GMM),可以作为基于嵌入的二塔模型实施;(2) 负面样本(NSDN)网络(NSDN)不是最佳选择,因为通过借用真实的“透视值”的测试模型模型和“透度”模拟模型框架,将“透度-透度-透度-透视”的模型和“透度-透度-透度-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透式-透视-透视-透视-透式”系统-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透性-透性-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透视-透性-透式-透式-透式-透式-透式框架)。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2021年6月29日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
13+阅读 · 2018年4月6日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员