Artificial intelligence is currently powering diverse real-world applications. These applications have shown promising performance, but raise complicated ethical issues, i.e. how to embed ethics to make AI applications behave morally. One way toward moral AI systems is by imitating human prosocial behavior and encouraging some form of good behavior in systems. However, learning such normative ethics (especially from images) is challenging mainly due to a lack of data and labeling complexity. Here, we propose a model that predicts visual commonsense immorality in a zero-shot manner. We train our model with an ETHICS dataset (a pair of text and morality annotation) via a CLIP-based image-text joint embedding. In a testing phase, the immorality of an unseen image is predicted. We evaluate our model with existing moral/immoral image datasets and show fair prediction performance consistent with human intuitions. Further, we create a visual commonsense immorality benchmark with more general and extensive immoral visual contents. Codes and dataset are available at https://github.com/ku-vai/Zero-shot-Visual-Commonsense-Immorality-Prediction. Note that this paper might contain images and descriptions that are offensive in nature.
翻译:目前,人工智能正在推动各种各样的现实世界应用。这些应用显示有良好的表现,但提出了复杂的伦理问题,即如何将道德纳入道德,使AI应用程序具有道德行为。道德的人工智能系统的一个途径是模仿人类亲社会行为,鼓励在系统中采取某种形式的良好行为。然而,学习这种规范性道德(特别是从图像中学习),主要由于缺乏数据和标签的复杂性而具有挑战性。我们在这里提出了一个模型,以零发方式预测视觉常识的不道德性。我们通过基于 CLIP 的图像文本和文本联合嵌入,用ETHICS数据集(一对文本和道德说明)来培训我们的模型。在测试阶段,可以预测看不见的图像的不道德性。我们用现有的道德/不道德图像数据集来评估我们的模型,并显示与人类直觉相一致的公平预测性表现。此外,我们创建了一个视觉常识性不道德基准,具有更笼统和广泛的不道德的视觉内容。我们在https://github.com/ku-vai/Zero-shot-visal-Commission-Commalimationalimposations revial-visitation。