The cold-start recommendation is an urgent problem in contemporary online applications. It aims to provide users whose behaviors are literally sparse with as accurate recommendations as possible. Many data-driven algorithms, such as the widely used matrix factorization, underperform because of data sparseness. This work adopts the idea of meta-learning to solve the user's cold-start recommendation problem. We propose a meta-learning based cold-start sequential recommendation framework called metaCSR, including three main components: Diffusion Representer for learning better user/item embedding through information diffusion on the interaction graph; Sequential Recommender for capturing temporal dependencies of behavior sequences; Meta Learner for extracting and propagating transferable knowledge of prior users and learning a good initialization for new users. metaCSR holds the ability to learn the common patterns from regular users' behaviors and optimize the initialization so that the model can quickly adapt to new users after one or a few gradient updates to achieve optimal performance. The extensive quantitative experiments on three widely-used datasets show the remarkable performance of metaCSR in dealing with user cold-start problem. Meanwhile, a series of qualitative analysis demonstrates that the proposed metaCSR has good generalization.
翻译:冷启动建议是当代在线应用程序的一个紧迫问题。 它旨在为行为实际上很少的用户提供尽可能准确的建议。 许多数据驱动算法,如广泛使用的矩阵因数据稀少而表现不佳的矩阵因数据稀少而表现不佳。 这项工作采用了元学习的概念来解决用户的冷启动建议问题。 我们提出了一个基于以元学习为基础的冷启动顺序建议框架,称为METCSR,包括三个主要组成部分: 传播代表,通过互动图上的信息传播学习更好的用户/项目嵌入; 获取行为序列时间依赖性的序列建议; 提取和传播先前用户可转移的知识并为新用户学习良好初始化的元学习器。 元学习者掌握从经常用户行为中学习共同模式和优化初始化的能力,以使模型能够在一次或几次梯度更新后迅速适应新用户,以达到最佳性能。 三种广泛使用的数据集的广泛量化实验显示,在应对用户的冷启动问题时,元CSR的显著表现。 同时, 一系列定性分析显示,拟议的元化模型具有总体性分析。