Coded caching technique is an efficient approach to reduce the transmission load in networks and has been studied in heterogeneous network settings in recent years. In this paper, we consider a new widespread caching system called $(K_1,K_2,U,r,M,N)$ two-dimensional (2D) caching-aided ultra-dense network (UDN) with a server containing $N$ files, $K_1K_2$ cache nodes arranged neatly on a grid with $K_1$ rows and $K_2$ columns, and $U$ cache-less users randomly distributed around cache nodes. Each cache node can cache at most $M\leq N$ files and has a certain service region by Euclidean distance. The server connects to users through an error-free shared link and the users in the service region of a cache node can freely retrieve all cached contents of this cache node. We aim to design a coded caching scheme for 2D caching-aided UDN systems to reduce the transmission load in the worst case while meeting all possible users' demands. First, we divide all possible users into four classes according to their geographical locations. Then our first order optimal scheme is proposed based on the Maddah-Ali and Niesen scheme. Furthermore, by compressing the transmitted signals of our first scheme based on Maximum Distance Separable (MDS) code, we obtain an improved order optimal scheme with a smaller transmission load.
翻译:代码化缓存技术是减少网络传输负荷的有效方法,近年来已在多种网络设置中进行了研究。 在本文中,我们考虑了一个新的宽广的缓存系统,名为$(K_1,K_2,U,r,M,N)二维(2D)缓存辅助超临界网络(UDN),服务器包含$N的文件,1K_1K_2美元缓存节点在网格上整洁地安排好,有1K_1美元行和2美元列,有1美元缓存无缓存用户随机分布在缓存节点周围。每个缓存节点可以以最多$M\leq N$的文件缓存,并且拥有由 Euclidean 远处提供的某种服务区域。服务器通过无误共享链接与用户连接,服务区的用户可以自由地检索缓存节点的所有缓存内容。 我们的目标是设计一个2D经改进的缓存缓存缓存系统,以及无缓存用户系统,以减少最坏的传输量,同时满足所有用户的需求。 我们所有最短的缓存计划, 将所有最短的系统, 以最短的系统以最精确的系统以最精确的系统为基础为基础, 。