Intent detection (ID) and Slot filling (SF) are two major tasks in spoken language understanding (SLU). Recently, attention mechanism has been shown to be effective in jointly optimizing these two tasks in an interactive manner. However, latest attention-based works concentrated only on the first-order attention design, while ignoring the exploration of higher-order attention mechanisms. In this paper, we propose a BiLinear attention block, which leverages bilinear pooling to simultaneously exploit both the contextual and channel-wise bilinear attention distributions to capture the second-order interactions between the input intent or slot features. Higher and even infinity order interactions are built by stacking numerous blocks and assigning Exponential Linear Unit (ELU) to blocks. Before the decoding stage, we introduce the Dynamic Feature Fusion Layer to implicitly fuse intent and slot information in a more effective way. Technically, instead of simply concatenating intent and slot features, we first compute two correlation matrices to weight on two features. Furthermore, we present Higher-order Attention Network for the SLU tasks. Experiments on two benchmark datasets show that our approach yields improvements compared with the state-of-the-art approach. We also provide discussion to demonstrate the effectiveness of the proposed approach.


翻译:故意探测(ID)和“空格填充(SF)”是口语理解(SLU)的两大主要任务。最近,关注机制在以互动方式共同优化这两项任务方面证明是有效的。然而,最近基于关注的工程只集中在一阶关注设计上,而忽略了对更阶关注机制的探索。在本文件中,我们建议建立一个双线关注区块,利用双线集合,同时利用背景和对频道的双线式双线式关注分布,以捕捉输入意图或空档特征之间的第二阶次互动。通过堆叠多个区块和将显性线性线性单元(ELU)划至区块来建立更高甚至不精确的顺序互动。在解码阶段之前,我们引入动态长线性图层,以更有效的方式隐含导出导出导出导出导出意图和时间档信息。在技术上,我们不是简单地将意向和位置特征组合组合成,而是首先对两个特征进行两次相关的相关矩阵。此外,我们为SLU任务的高级关注网格网络。在两个基准数据配置上进行了实验,还展示了我们所提出的方法的产量,以显示我们的方法的产量。我们还展示了我们所提出的方法。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
已删除
将门创投
3+阅读 · 2019年4月12日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
Arxiv
21+阅读 · 2020年10月11日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年2月28日
VIP会员
相关VIP内容
Top
微信扫码咨询专知VIP会员