In this work, we extend the celebrated Lenstra-Lenstra-Lov\'asz (LLL) reduction from over real bases to over complex bases. The complex bases, along with direct-sums defined by rings of imaginary quadratic integers, induce algebraic lattices. We first analyze properties of these algebraic lattices, and then construct a general algebraic LLL reduction algorithm for them. Properties and implementations of the algorithm are examined. In particular, satisfying Lov\'asz's condition requires the ring to be Euclidean. As an application, we use the algebraic LLL algorithm to find the network coding matrix in compute-and-forward. Such lattice reduction-based approaches have low complexity which is not dictated by the signal-to-noise (SNR) ratio. Moreover, such approaches can not only preserve the degree-of-freedom of computation rates, but ensure the independence in the code space as well.
翻译:在这项工作中,我们把著名的Lentstra-Lenstra-Lov\'asz(LLLL)削减范围从真正的基地扩大到复杂的基地。 复杂的基地, 以及由想象的二次整数环所定义的直接和数, 诱导代数斜体。 我们首先分析这些代数斜体的特性, 然后为它们建立一个通用的代数缩放算法。 正在研究算法的属性和实施。 特别是, 满足Lov\'asz的条件要求环必须是Euclidean 。 作为应用, 我们使用代数ALL算法来找到计算和前方的网络编码矩阵。 这种基于 lattica 的递减法具有低复杂性, 并非由信号到噪音( SNR) 比率所决定的。 此外, 这种方法不仅能够保持计算率的自由程度, 而且还能确保代码空间的独立性 。