We consider the problem of assigning agents to resources in the two-sided preference model with upper and lower-quota requirements on resources. This setting (known as the HRLQ setting) models real-world applications like assigning students to colleges or courses, resident doctors to hospitals and so on. In presence of lower-quotas, an instance may not admit a stable matching that fulfils the lower-quotas. Prem Krishnaa et al. [SAGT 2020] study two alternative notions of optimality for the HRLQ instances -- envy-freeness and relaxed stability. They investigate the complexity of computing a maximum size envy-free matching (MAXEFM) and a maximum size relaxed stable matching(MAXRSM) that fulfils the lower-quotas. They show that both these optimization problems are NP-hard and not approximable within a constant factor unless P=NP. In this work, we investigate the parameterized complexity of MAXEFM and MAXRSM. We consider natural parameters derived from the instance -- the number of lower-quota hospitals, deficiency of the instance, size of a maximum matching, size of a stable matching, length of the preference list of a lower-quota hospital, to name a few. We show that MAXEFM problem is W[1]-hard for several interesting parameters but admits a polynomial size kernel for a combination of parameters. We show that MAXRSM problem does not admit an FPT algorithm unless P=NP for two natural parameters but admits a polynomial size kernel for a combination of parameters in a special case. We also show that both these problems admit FPT algorithms on a set of parameters.
翻译:我们考虑在双向优惠模式中分配资源代理的问题,这种模式(称为HRLQ设置)模式的设置(称为HRLQ设置)在现实世界中的应用模式,例如将学生分配到学院或课程,将住院医生分配到医院等。在低配额的情况下,一个实例可能不会承认稳定匹配,满足较低配额。Prem Krishnaa等人[SAGT 研究两种对HRLQ案例最优化的替代概念 -- -- 嫉妒和放松稳定性。它们调查了计算最大规模无嫉妒匹配(MAXEFM)和最大规模稳定匹配参数(MAXRSM)的复杂程度。它们表明,这两个优化问题都是固定的,除非P=NP。在这项工作中,我们调查了MAXFMFFM和MAXMRM的参数的参数组合。我们从实例中可以承认低规模的医院数量,但不够充分匹配的数值,除非MAX的数值显示一个稳定比例。