A well-designed scheduling policy can unlock significant performance improvements with no additional resources. Multiserver SRPT (SRPT-$k$) is known to achieve asymptotically optimal mean response time in the heavy traffic limit, as load approaches capacity. No better policy is known for the M/G/$k$ queue in any regime. We introduce a new policy, SRPT-Except-$k+1$ & Modified SRPT (SEK-SMOD), which is the first policy to provably achieve lower mean response time than SRPT-$k$. SEK-SMOD outperforms SRPT-$k$ across all loads and all job size distributions. The key idea behind SEK-SMOD is to prioritize large jobs over small jobs in specific scenarios to improve server utilization, and thereby improve the response time of subsequent jobs in expectation. Our proof is a novel application of hybrid worst-case and stochastic techniques to relative analysis, where we analyze the deviations of our proposed SEK-SMOD policy away from the SRPT-$k$ baseline policy. Furthermore, we design Practical-SEK (a simplified variant of SEK-SMOD) and empirically verify the improvement over SRPT-$k$ via simulation.


翻译:设计良好的调度策略能够在无需额外资源的情况下显著提升系统性能。多服务器最短剩余处理时间优先调度策略(SRPT-$k$)在负载趋近于系统容量时,已被证明能在重负载极限下实现渐近最优的平均响应时间。对于M/G/$k$队列模型,在任何负载状态下尚未发现更优的策略。本文提出一种新策略——SRPT-Except-$k+1$与改进型SRPT混合调度策略(SEK-SMOD),这是首个可证明其平均响应时间低于SRPT-$k$的策略。SEK-SMOD在所有负载条件及所有作业规模分布下均优于SRPT-$k$。该策略的核心思想是在特定场景下优先调度大作业而非小作业,以提高服务器利用率,从而在期望意义上改善后续作业的响应时间。我们的证明创新性地结合了最坏情况分析与随机技术进行相对性能分析,通过量化SEK-SMOD策略相对于SRPT-$k$基准策略的偏离程度完成论证。此外,我们设计了实用化SEK策略(SEK-SMOD的简化变体),并通过仿真实验验证了其相对于SRPT-$k$的性能提升。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2023年9月22日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
11+阅读 · 2023年9月22日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员