Earth system models are composed of coupled components that separately model systems such as the global atmosphere, ocean, and land surface. While these components are well developed, coupling them in a single system can be a significant challenge. Computational efficiency, accuracy, and stability are principal concerns. In this study, we focus on these issues. In particular, implicit-explicit (IMEX) tight and loose coupling strategies are explored for handling different time scales. For a simplified model for the air-sea interaction problem, we consider coupled compressible Navier-Stokes equations with an interface condition. Under the rigid-lid assumption, horizontal momentum and heat flux are exchanged through the interface. Several numerical experiments are presented to demonstrate the stability of the coupling schemes. We show both numerically and theoretically that our IMEX coupling methods are mass conservative for a coupled compressible Navier-Stokes system with the rigid-lid condition.
翻译:地球系统模型由诸如全球大气、海洋和陆地表面等不同的模型系统组成。 这些元件虽然发展良好,但将它们合并成一个单一系统可能是一项重大挑战。 计算效率、准确性和稳定性是主要问题。 在本研究中,我们注重这些问题。 特别是,为处理不同时间尺度,探索了隐含和隐含的(IMEX)紧密和松散的混合战略。 对于空气-海洋相互作用问题的简化模型,我们考虑将压缩的导航-斯托克斯方程式与一个界面条件结合起来。 在僵硬的假设下,横向动力和热通量通过界面进行交换。 进行了数项实验,以证明组合计划的稳定性。 我们从数字和理论上都表明,我们的IMEX组合方法对于结合的可压缩导航-斯托克斯系统与僵硬的螺旋性条件来说,具有大规模保守性。