Determining the causes of extreme events is a fundamental question in many scientific fields. An important aspect when modelling multivariate extremes is the tail dependence. In application, the extreme dependence structure may significantly depend on covariates. As for the general case of modelling including covariates, only some of the covariates are causal. In this paper, we propose a methodology to discover the causal covariates explaining the tail dependence structure between two variables. The proposed methodology for discovering causal variables is based on comparing observations from different environments or perturbations. It is a desired methodology for predicting extremal behaviour in a new, unobserved environment. The methodology is applied to a dataset of $\text{NO}_2$ concentration in the UK. Extreme $\text{NO}_2$ levels can cause severe health problems, and understanding the behaviour of concurrent severe levels is an important question. We focus on revealing causal predictors for the dependence between extreme $\text{NO}_2$ observations at different sites.
翻译:确定极端事件的原因是许多科学领域的一个基本问题。在模拟多变极端时的一个重要方面是尾部依赖性。在应用中,极端依赖性结构可能在很大程度上取决于共变情况。关于包括共变在内的一般建模案例,只有部分共变是因果。在本文件中,我们提议一种方法,以发现解释两个变量之间尾部依赖性结构的因果共变情况。提议的发现因果变量的方法是基于比较不同环境或扰动的观测结果。这是预测新的、未观测环境中极端行为的一种理想方法。该方法适用于英国的美元/text{NO ⁇ 2$集中度数据集。极端的美元/text{NO ⁇ 2$可造成严重的健康问题,了解同时严重水平的行为是一个重要问题。我们侧重于在不同地点发现极端 美元/NO ⁇ 2$之间的依赖性的因果关系预测数据。