Neural networks can be successfully used to improve several modules of advanced video coding schemes. In particular, compression of colour components was shown to greatly benefit from usage of machine learning models, thanks to the design of appropriate attention-based architectures that allow the prediction to exploit specific samples in the reference region. However, such architectures tend to be complex and computationally intense, and may be difficult to deploy in a practical video coding pipeline. This work focuses on reducing the complexity of such methodologies, to design a set of simplified and cost-effective attention-based architectures for chroma intra-prediction. A novel size-agnostic multi-model approach is proposed to reduce the complexity of the inference process. The resulting simplified architecture is still capable of outperforming state-of-the-art methods. Moreover, a collection of simplifications is presented in this paper, to further reduce the complexity overhead of the proposed prediction architecture. Thanks to these simplifications, a reduction in the number of parameters of around 90% is achieved with respect to the original attention-based methodologies. Simplifications include a framework for reducing the overhead of the convolutional operations, a simplified cross-component processing model integrated into the original architecture, and a methodology to perform integer-precision approximations with the aim to obtain fast and hardware-aware implementations. The proposed schemes are integrated into the Versatile Video Coding (VVC) prediction pipeline, retaining compression efficiency of state-of-the-art chroma intra-prediction methods based on neural networks, while offering different directions for significantly reducing coding complexity.


翻译:特别是,由于设计了适当的关注型建筑,可以预测利用参照区域的具体样本,因此,对彩色组件的压缩被证明大大受益于机器学习模型的使用;然而,这些建筑往往复杂,计算紧张,可能难以在实际视频编码管道中部署,这项工作的重点是减少这些方法的复杂性,设计一套简化的、具有成本效益的、基于关注内部染色体的复杂结构;提议采用新的多模型方法,减少推断过程的复杂程度;由此形成的简化结构仍然能够超过最先进的方法;此外,本文还收集了一些简化,以进一步降低拟议的视频编码结构的复杂程度;由于这些简化,在最初基于关注的方法方面减少了大约90%的参数;简化了减少革命性内脏操作的顶部结构,简化了跨结构,简化了跨结构,实现了最初的准确性结构;同时,将硬拷贝系统整合成最初的硬拷贝性结构;同时,将硬拷贝系统整合了硬拷贝方法,将硬拷贝方法转化为最初的硬拷贝性结构。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
【NeurIPS2020-MIT】子图神经网络,Subgraph Neural Networks
专知会员服务
45+阅读 · 2020年9月28日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
26+阅读 · 2018年2月27日
Arxiv
10+阅读 · 2018年2月4日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
【NeurIPS2020-MIT】子图神经网络,Subgraph Neural Networks
专知会员服务
45+阅读 · 2020年9月28日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员