Catastrophic forgetting in neural networks during incremental learning remains a challenging problem. Previous research investigated catastrophic forgetting in fully connected networks, with some earlier work exploring activation functions and learning algorithms. Applications of neural networks have been extended to include similarity and metric learning. It is of significant interest to understand how metric learning loss functions would be affected by catastrophic forgetting. Our research investigates catastrophic forgetting for four well-known metric-based loss functions during incremental class learning. The loss functions are angular, contrastive, centre, and triplet loss. Our results show that the rate of catastrophic forgetting is different across loss functions on multiple datasets. The angular loss was least affected, followed by contrastive, triplet loss, and centre loss with good mining techniques. We implemented three existing incremental learning techniques, iCARL, EWC, and EBLL. We further proposed our novel technique using VAEs to generate representation as exemplars that are passed through intermediate layers of the network. Our method outperformed the three existing techniques. We have shown that we do not require stored images as exemplars for incremental learning with similarity learning. The generated representations can help preserve regions of the embedding space used by prior knowledge so that new knowledge will not "overwrite" prior knowledge.
翻译:在渐进学习期间,神经网络中的灾难性遗忘是一个棘手的问题。 先前的研究调查了在完全连接的网络中灾难性遗忘的问题,有些早期的工作探索了激活功能和学习算法。 神经网络的应用已经扩展, 包括了相似性和量度学习。 了解灾难性遗忘将如何影响矩阵学习损失功能。 我们的研究调查了在递增班级学习期间四个众所周知的基于指标的损失函数的灾难性遗忘。 损失功能是角形的、对比性的、中心和三重损失。 我们的结果显示, 灾难性遗忘的速度在多个数据集中的各种损失函数中是不同的。 三角损失的影响最小, 其次是对比性的、 三重损失, 以及以良好的采矿技术造成的中心损失。 我们应用了三种现有的递增学习技术, iCARL、 EWC 和 EBLLL。 我们进一步建议我们的新技术, 使用VAEs作为通过网络的中间层生成的外表征。 我们的方法超越了三种现有技术。 我们已经表明, 我们不需要存储图像作为递增学习类似性学习的演示品。 生成的演示会有助于保存先前知识的区域。