Estimating reaction rates and chemical stability is fundamental, yet efficient methods for large-scale simulations remain out of reach despite advances in modeling and exascale computing. Direct simulation is limited by short timescales; machine-learned potentials require large data sets and struggle with transition state regions essential for reaction rates. Reaction network exploration with sufficient accuracy is hampered by the computational cost of electronic structure calculations, and even simplifications like harmonic transition state theory rely on prohibitively expensive saddle point searches. Surrogate model-based acceleration has been promising but hampered by overhead and numerical instability. This dissertation presents a holistic solution, co-designing physical representations, statistical models, and systems architecture in the Optimal Transport Gaussian Process (OT-GP) framework. Using physics-aware optimal transport metrics, OT-GP creates compact, chemically relevant surrogates of the potential energy surface, underpinned by statistically robust sampling. Alongside EON software rewrites for long timescale simulations, we introduce reinforcement learning approaches for both minimum-mode following (when the final state is unknown) and nudged elastic band methods (when endpoints are specified). Collectively, these advances establish a representation-first, modular approach to chemical kinetics simulation. Large-scale benchmarks and Bayesian hierarchical validation demonstrate state-of-the-art performance and practical exploration of chemical kinetics, transforming a longstanding theoretical promise into a working engine for discovery.
翻译:暂无翻译