The classification of different fine hand movements from EEG signals represents a relevant research challenge, e.g., in brain-computer interface applications for motor rehabilitation. Here, we analyzed two different datasets where fine hand movements (touch, grasp, palmar and lateral grasp) were performed in a self-paced modality. We trained and tested a newly proposed convolutional neural network (CNN), and we compared its classification performance into respect to two well-established machine learning models, namely, a shrinked-LDA and a Random Forest. Compared to previous literature, we took advantage of the knowledge of the neuroscience field, and we trained our CNN model on the so-called Movement Related Cortical Potentials (MRCPs)s. They are EEG amplitude modulations at low frequencies, i.e., (0.3, 3) Hz, that have been proved to encode several properties of the movements, e.g., type of grasp, force level and speed. We showed that CNN achieved good performance in both datasets and they were similar or superior to the baseline models. Also, compared to the baseline, our CNN requires a lighter and faster pre-processing procedure, paving the way for its possible use in an online modality, e.g., for many brain-computer interface applications.


翻译:对EEG信号的不同细手运动进行分类是一个相关的研究挑战,例如,在用于汽车修复的大脑-计算机界面应用中,这是一种相关的研究挑战。在这里,我们分析了两种不同的数据集,在这些数据集中,以自定速度方式进行了细手运动(触摸、抓抓、棕榈和横向掌握),我们培训和测试了新提议的卷发神经网络(CNN),并将其分类性能与两个成熟的机器学习模型(即缩缩放的LDA和随机森林)相比较。与以往的文献相比,我们利用了神经科学领域的知识,并且我们用所谓的移动相关科幻潜力(MRTCPs)对CNN模型进行了培训。它们是EEG的缩放调制,在低频率上,即0.3、3、Hz,这已证明可以将移动的几种特性(如缩放类型、强度和速度)进行编码。我们显示CNN在数据集中都取得了良好的性能,它们与基线模型相似或优越性。此外,与基线相比,我们的CNNCM(M-CN)程序需要一种较轻和更快的计算机化的系统前处理程序。

0
下载
关闭预览

相关内容

【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
97+阅读 · 2019年12月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年1月15日
Arxiv
0+阅读 · 2021年1月14日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员