This paper presents a coupled, neural network-aided longitudinal cruise and lateral path-tracking controller for an autonomous vehicle with model uncertainties and experiencing unknown external disturbances. Using a feedback error learning mechanism, an inverse vehicle dynamics learning scheme utilizing an adaptive Radial Basis Function (RBF) neural network, referred to as the Extended Minimal Resource Allocating Network (EMRAN) is employed. EMRAN uses an extended Kalman filter for online learning and weight updates, and also incorporates a growing/pruning strategy for maintaining a compact network for easier real-time implementation. The online learning algorithm handles the parametric uncertainties and eliminates the effect of unknown disturbances on the road. Combined with a self-regulating learning scheme for improving generalization performance, the proposed EMRAN-aided control architecture aids a basic PID cruise and Stanley path-tracking controllers in a coupled form. Its performance and robustness to various disturbances and uncertainties are compared with the conventional PID and Stanley controllers, along with a comparison with a fuzzy-based PID controller and an active disturbance rejection control (ADRC) scheme. Simulation results are presented for both slow and high speed scenarios. The root mean square (RMS) and maximum tracking errors clearly indicate the effectiveness of the proposed control scheme in achieving better tracking performance in autonomous vehicles under unknown environments.


翻译:本文为具有模型不确定性和经历未知外部扰动的自主车辆提供了一个由神经网络辅助的纵向巡航和横向跟踪路径控制器。使用反馈错误学习机制,一个利用适应性辐射基础函数神经网络的反车辆动态学习计划,称为扩展最小资源分配网(EMRAAN),EMRAAN使用一个扩大的卡尔曼过滤器进行在线学习和体重更新,并纳入一个不断增长/运行的战略,以维持一个较易实时执行的紧凑网络。在线学习算法处理参数不确定性并消除未知扰动对公路的影响。与改进一般化业绩的自我调节学习计划相结合,拟议的EMRAAN辅助控制架构有助于基本的PID巡航和斯坦利跟踪路径控制器(EMRAAN),与常规PID和斯坦利控制器相比,其性能和坚固度与各种扰动和不稳定性都比较。在线学习算法处理器处理参数不确定性并消除未知扰动扰动对道路的影响。与改进一般状态的自我调节系统(ADRC)的自我调节器,连同改进的自我调节系统自我调节机制的自我调节机制,连同改进自我调节的自我调节的自我调节的自我调节机制,同时显示最佳和快速跟踪运行模式。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员