For multilayer materials in thin substrate systems, interfacial failure is one of the most challenges. The traction-separation relations (TSR) quantitatively describe the mechanical behavior of a material interface undergoing openings, which is critical to understand and predict interfacial failures under complex loadings. However, existing theoretical models have limitations on enough complexity and flexibility to well learn the real-world TSR from experimental observations. A neural network can fit well along with the loading paths but often fails to obey the laws of physics, due to a lack of experimental data and understanding of the hidden physical mechanism. In this paper, we propose a thermodynamic consistent neural network (TCNN) approach to build a data-driven model of the TSR with sparse experimental data. The TCNN leverages recent advances in physics-informed neural networks (PINN) that encode prior physical information into the loss function and efficiently train the neural networks using automatic differentiation. We investigate three thermodynamic consistent principles, i.e., positive energy dissipation, steepest energy dissipation gradient, and energy conservative loading path. All of them are mathematically formulated and embedded into a neural network model with a novel defined loss function. A real-world experiment demonstrates the superior performance of TCNN, and we find that TCNN provides an accurate prediction of the whole TSR surface and significantly reduces the violated prediction against the laws of physics.


翻译:对于薄薄基底系统中的多层材料而言,相互偏差是最大的挑战之一。牵引分离关系(TSR)定量描述正在打开的材料界面的机械行为,这对于理解和预测复杂负荷下的相互偏差至关重要。然而,现有的理论模型在足够复杂和灵活性上存在局限性,难以从实验观测中很好地了解真实世界的TSR。神经网络可以与装载路径相适应,但往往无法遵守物理定律,因为缺乏实验数据和对隐蔽物理机制的理解。在本文中,我们建议采用热动力一致的神经网络(TCNNNN)方法,用稀少的实验数据来建立由数据驱动的TSR模型。TCN利用物理学知情神经网络(PINN)的最新进展,将物理信息编码为损失功能,并使用自动分化来有效训练神经网络。我们调查三种热动力一致的原则,即:积极的能量分解、最陡峭的能量分解度、以及能量保守的TRN轨道装载路径。TNNRN的精确预测路径,所有这些模型都以数学和高层次的轨道来展示一个数学上的损失轨道上的实验。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月19日
Arxiv
0+阅读 · 2021年1月16日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
11+阅读 · 2018年3月23日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员