One of the obstacles hindering the scaling-up of the initial successes of machine learning in practical engineering applications is the dependence of the accuracy on the size of the database that "drives" the algorithms. Incorporating the already-known physical laws into the training process can significantly reduce the size of the required database. In this study, we establish a neural network-based computational framework to characterize the finite deformation of elastic plates, which in classic theories is described by the F\"oppl--von K\'arm\'an (FvK) equations with a set of boundary conditions (BCs). A neural network is constructed by taking the spatial coordinates as the input and the displacement field as the output to approximate the exact solution of the FvK equations. The physical information (PDEs, BCs, and potential energies) is then incorporated into the loss function, and a pseudo dataset is sampled without knowing the exact solution to finally train the neural network. The prediction accuracy of the modeling framework is carefully examined by applying it to four different loading cases: in-plane tension with non-uniformly distributed stretching forces, in-plane central-hole tension, out-of-plane deflection, and buckling under compression. \hl{Three ways of formulating the loss function are compared: 1) purely data-driven, 2) PDE-based, and 3) energy-based. Through the comparison with the finite element simulations, it is found that all the three approaches can characterize the elastic deformation of plates with a satisfactory accuracy if trained properly. Compared with incorporating the PDEs and BCs in the loss, using the total potential energy shows certain advantage in terms of the simplicity of hyperparameter tuning and the computational efficiency.


翻译:在实际工程应用中,阻碍机械模拟学习初步成功的障碍之一是对“驱动”算法数据库大小的准确性的依赖性。将已知物理法纳入培训过程可以大大缩小所需数据库的大小。在本研究中,我们建立了一个神经网络计算框架,以描述弹性板的有限变形,在经典理论中,由F\'oppl-von K\'arm\an(FvK)与一组边界条件(BCs)对等方程式所描述的。通过将空间坐标作为输入和移位字段作为输出以接近FvK方程式的确切解决办法来构建神经网络网络网络网络。随后,我们建立了一个以神经网络为基础的计算框架,以确定弹性板板板板板板板板板板板板板板板板板板板的固定准确性,经过训练的精确性框架的预测性能可适用于四个不同的装载情况:与非直线板格的变价比较,使用非直线板格的变价比值, 将能量变压的能量值制成一个总值。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
60+阅读 · 2020年3月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Deep Neural Network Approximation Theory
Arxiv
0+阅读 · 2021年3月12日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
60+阅读 · 2020年3月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员