Diffusion models have emerged as the de facto choice for generating high-quality visual signals across various domains. However, training a single model to predict noise across various levels poses significant challenges, necessitating numerous iterations and incurring significant computational costs. Various approaches, such as loss weighting strategy design and architectural refinements, have been introduced to expedite convergence and improve model performance. In this study, we propose a novel approach to design the noise schedule for enhancing the training of diffusion models. Our key insight is that the importance sampling of the logarithm of the Signal-to-Noise ratio ($\log \text{SNR}$), theoretically equivalent to a modified noise schedule, is particularly beneficial for training efficiency when increasing the sample frequency around $\log \text{SNR}=0$. This strategic sampling allows the model to focus on the critical transition point between signal dominance and noise dominance, potentially leading to more robust and accurate predictions.We empirically demonstrate the superiority of our noise schedule over the standard cosine schedule.Furthermore, we highlight the advantages of our noise schedule design on the ImageNet benchmark, showing that the designed schedule consistently benefits different prediction targets. Our findings contribute to the ongoing efforts to optimize diffusion models, potentially paving the way for more efficient and effective training paradigms in the field of generative AI.
翻译:暂无翻译