We prove that deciding the vanishing of the character of the symmetric group is $C_=P$-complete. We use this hardness result to prove that the the square of the character is not contained in $\#P$, unless the polynomial hierarchy collapses to the second level. This rules out the existence of any (unsigned) combinatorial description for the square of the characters. As a byproduct of our proof we conclude that deciding positivity of the character is $PP$-complete under many-one reductions, and hence $PH$-hard under Turing-reductions.
翻译:我们证明决定对称组的特征消失是 $C $P$- 完整的。 我们使用这种硬性结果来证明字符的方块不是$P$, 除非多民族等级倒塌到第二等级。 这排除了字符方块存在任何( 未签名的)组合描述。 作为我们证据的副产品, 我们的结论是, 字符的相对性决定是在多个减幅中完全的$PP$, 因此在图灵减幅中是硬的$P$。