Several cloud-based applications, such as cloud gaming, rent servers to execute jobs which arrive in an online fashion. Each job has a resource demand and must be dispatched to a cloud server which has enough resources to execute the job, which departs after its completion. Under the `pay-as-you-go' billing model, the server rental cost is proportional to the total time that servers are actively running jobs. The problem of efficiently allocating a sequence of online jobs to servers without exceeding the resource capacity of any server while minimizing total server usage time can be modelled as a variant of the dynamic bin packing problem (DBP), called MinUsageTime DBP. In this work, we initiate the study of the problem with multi-dimensional resource demands (e.g. CPU/GPU usage, memory requirement, bandwidth usage, etc.), called MinUsageTime Dynamic Vector Bin Packing (DVBP). We study the competitive ratio (CR) of Any Fit packing algorithms for this problem. We show almost-tight bounds on the CR of three specific Any Fit packing algorithms, namely First Fit, Next Fit, and Move To Front. We prove that the CR of Move To Front is at most $(2\mu+1)d +1$, where $\mu$ is the ratio of the max/min item durations. For $d=1$, this significantly improves the previously known upper bound of $6\mu+7$ (Kamali & Lopez-Ortiz, 2015). We then prove the CR of First Fit and Next Fit are bounded by $(\mu+2)d+1$ and $2\mu d+1$, respectively. Next, we prove a lower bound of $(\mu+1)d$ on the CR of any Any Fit packing algorithm, an improved lower bound of $2\mu d$ for Next Fit, and a lower bound of $2\mu$ for Move To Front in the 1-D case. All our bounds improve or match the best-known bounds for the 1-D case. Finally, we experimentally study the average-case performance of these algorithms on randomly generated synthetic data, and observe that Move To Front outperforms other Any Fit packing algorithms.
翻译:摘要:云游戏等基于云的应用程序租用服务器以执行在线到达的作业。每个作业具有资源需求,并且必须派遣到具有足够资源以执行该作业的云服务器上,在其完成后离开。在“按使用付费”的计费模式下,服务器租赁成本与服务器主动运行作业的总时间成比例。在不超过任何服务器资源容量的情况下,有效地分配一系列在线作业给服务器,同时最小化总服务器使用时间的问题可以被建模为动态装箱问题(DBP)的变体,称为MinUsageTime DBP。在本研究中,我们启动了这个问题的多维资源需求的研究(例如CPU/GPU使用,内存需求,带宽使用等),称为MinUsageTime动态向量装箱(DVBP)。我们研究了任意适配装箱算法在此问题上的竞争比(CR)。我们证明了三个特定任意适配装箱算法的CR,即First Fit、Next Fit和Move To Front的上下界几乎是紧密的。我们证明,Move To Front的CR至多为$(2\mu+1)d+1$,其中$\mu$是最大/最小项持续时间的比率。对于$d=1$,这显着改善了之前已知的上界$6\mu+7$(Kamali&Lopez-Ortiz,2015)。然后,我们证明了First Fit和Next Fit的CR分别受到$(\mu+2)d+1$和$2\mu d+1$的限制。接下来,我们证明了任何任意适配装箱算法的CR至少为$(\mu+1)d$,Next Fit的改进下界为$2\mu d$,Move To Front在1-D情况下的下界为$2\mu$。我们所有的限制都改进或与1-D情况下已知的最佳限制相匹配。最后,我们在随机生成的合成数据上实验研究了这些算法的平均情况性能,并观察到Move To Front优于其他任意适配装箱算法。