The use of small and remotely controlled unmanned aerial vehicles (UAVs), or drones, has increased in recent years. This goes in parallel with misuse episodes, with an evident threat to the safety of people or facilities. As a result, the detection of UAV has also emerged as a research topic. Most studies on drone detection fail to specify the type of acquisition device, the drone type, the detection range, or the dataset. The lack of proper UAV detection studies employing thermal infrared cameras is also an issue, despite its success with other targets. Besides, we have not found any previous study that addresses the detection task as a function of distance to the target. Sensor fusion is indicated as an open research issue as well, although research in this direction is scarce too. To counteract the mentioned issues and allow fundamental studies with a common public benchmark, we contribute with an annotated multi-sensor database for drone detection that includes infrared and visible videos and audio files. The database includes three different drones, of different sizes and other flying objects that can be mistakenly detected as drones, such as birds, airplanes or helicopters. In addition to using several different sensors, the number of classes is higher than in previous studies. To allow studies as a function of the sensor-to-target distance, the dataset is divided into three categories (Close, Medium, Distant) according to the industry-standard Detect, Recognize and Identify (DRI) requirements, built on the Johnson criteria. Given that the drones must be flown within visual range due to regulations, the largest sensor-to-target distance for a drone is 200 m, and acquisitions are made in daylight. The data has been obtained at three airports in Sweden: Halmstad Airport (IATA code: HAD/ICAO code: ESMT), Gothenburg City Airport (GSE/ESGP) and Malm\"o Airport (MMX/ESMS).


翻译:近年来,使用小型和遥控无人驾驶飞行器(无人驾驶飞行器)或无人驾驶飞机(无人驾驶飞行器)的情况有所增加。这与误用事件同时发生,明显威胁到人或设施的安全。结果,无人驾驶飞行器的探测也成为一个研究课题。关于无人驾驶飞行器探测的大多数研究未能具体说明获取装置的类型、无人驾驶飞行器的类型、探测范围或数据集。缺乏使用热红外红外照相机的适当无人驾驶飞行器探测研究也是一个问题。此外,我们没有发现以往任何研究将探测任务作为距离目标的函数的研究。传感器的合并也表明是一个公开的研究问题,尽管这方面的研究也很少。为了应对上述问题,并允许以公共基准进行基础研究,我们利用一个附加说明的多传感器数据库来进行无人驾驶飞行器的探测,其中包括红外和可见的视频和音频档案。数据库包括三个不同的无人驾驶飞机、不同尺寸和其他飞行物体,如鸟、飞机或直升机等,而且可以误测得的无人驾驶无人驾驶飞行器。Sensortar NSO的频率和直径直径直径飞行机的频率,除了使用若干次的直径直径飞行机机机机级的轨道,在市级的飞行机机机机机上,此外的机级的轨道上,还有三级的轨道的轨道的轨道的轨道的轨道上的轨道上的轨道上的飞行,此外的轨道的轨道是前三代码。在前的轨道的轨道上的轨道上的轨道上的轨道上的轨道上的轨道上的轨道上的轨道,在前代算。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
专知会员服务
33+阅读 · 2021年9月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
13+阅读 · 2021年3月3日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
VIP会员
相关资讯
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员