In recent years, the deep learning community has largely focused on the accuracy of deep generative models, resulting in impressive improvements in several research fields. However, this scientific race for quality comes at a tremendous computational cost, which incurs vast energy consumption and greenhouse gas emissions. If the current exponential growth of computational consumption persists, Artificial Intelligence (AI) will sadly become a considerable contributor to global warming. At the heart of this problem are the measures that we use as a scientific community to evaluate our work. Currently, researchers in the field of AI judge scientific works mostly based on the improvement in accuracy, log-likelihood, reconstruction or opinion scores, all of which entirely obliterates the actual computational cost of generative models. In this paper, we introduce the idea of relying on a multi-objective measure based on Pareto optimality, which simultaneously integrates the models accuracy, as well as the environmental impact of their training. By applying this measure on the current state-of-the-art in generative audio models, we show that this measure drastically changes the perceived significance of the results in the field, encouraging optimal training techniques and resource allocation. We hope that this type of measure will be widely adopted, in order to help the community to better evaluate the significance of their work, while bringing computational cost -- and in fine carbon emissions -- in the spotlight of AI research.


翻译:近些年来,深层次的学习界主要侧重于深层基因模型的准确性,从而在几个研究领域取得了令人印象深刻的改善。然而,这一科学质量竞赛的计算成本极高,导致大量能源消耗和温室气体排放。如果目前计算消费的指数增长持续下去,人工智能(AI)将可悲地成为全球变暖的重要原因。这个问题的核心是我们作为科学界用来评价我们工作的措施。目前,AI领域的研究人员主要根据准确性、日志相似性、重建或观点评分方面的改进来判断科学作品,所有这些都完全消除了基因模型的实际计算成本。在本文件中,我们提出依赖基于Pareto最佳性的多目标措施的想法,同时将模型准确性及其培训的环境影响结合起来。我们把这一措施运用到当前精准性音频模型中,表明这一措施极大地改变了实地成果的可觉察意义,鼓励最佳培训技术和资源配置。我们希望,在进行这种衡量的同时,在进行精确的碳排放研究时,将广泛地评估其成本,同时在社区中进行这种测量。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Novel Compaction Approach for SBST Test Programs
Arxiv
0+阅读 · 2021年9月8日
Generating Fact Checking Explanations
Arxiv
9+阅读 · 2020年4月13日
Arxiv
3+阅读 · 2019年10月31日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员