Health policy decisions regarding patient treatment strategies require consideration of both treatment effectiveness and cost. Optimizing treatment rules with respect to effectiveness may result in prohibitively expensive strategies; on the other hand, optimizing with respect to costs may result in poor patient outcomes. We propose a two-step approach for identifying an optimally cost-effective and interpretable dynamic treatment regime. First, we develop a combined Q-learning and policy-search approach to estimate an optimal list-based regime under a constraint on expected treatment costs. Second, we propose an iterative procedure to select an optimally cost-effective regime from a set of candidate regimes corresponding to different cost constraints. Our approach can estimate optimal regimes in the presence of commonly encountered challenges including time-varying confounding and correlated outcomes. Through simulation studies, we illustrate the validity of estimated optimal treatment regimes and examine operating characteristics under flexible modeling approaches. Using data from an observational cancer database, we apply our methodology to evaluate optimally cost-effective treatment strategies for assigning adjuvant radiation and chemotherapy to endometrial cancer patients.


翻译:关于病人治疗战略的保健政策决定既需要考虑治疗的有效性,也需要考虑费用问题。在效果方面优化治疗规则可能会导致令人望而生畏的昂贵战略;另一方面,在成本方面优化可能会导致病人的不良结果。我们建议采取两步办法,确定一种最具成本效益和可解释的动态治疗制度。首先,我们开发了一种综合的问答和政策研究方法,在预期治疗费用的限制下估计一个以清单为基础的最佳制度。第二,我们提议了一个迭接程序,从一套符合不同成本限制的候选制度中选择一种最符合成本效益的治疗制度。我们的方法可以估计在共同遇到的挑战,包括时间变化和关联结果的情况下的最佳制度。我们通过模拟研究,说明估计的最佳治疗制度的有效性,并根据灵活的模型方法审查运作特点。我们利用观察癌症数据库的数据,运用我们的方法来评价最符合成本效益的治疗战略,以便向内地癌症患者分配抗辐射和化疗药。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
17+阅读 · 2020年12月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年9月9日
Arxiv
0+阅读 · 2021年9月8日
Causal Inference for Quantile Treatment Effects
Arxiv
0+阅读 · 2021年9月8日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员