One of the most critical problems in weight-sharing neural architecture search is the evaluation of candidate models within a predefined search space. In practice, a one-shot supernet is trained to serve as an evaluator. A faithful ranking certainly leads to more accurate searching results. However, current methods are prone to making misjudgments. In this paper, we prove that their biased evaluation is due to inherent unfairness in the supernet training. In view of this, we propose two levels of constraints: expectation fairness and strict fairness. Particularly, strict fairness ensures equal optimization opportunities for all choice blocks throughout the training, which neither overestimates nor underestimates their capacity. We demonstrate that this is crucial for improving the confidence of models' ranking. Incorporating the one-shot supernet trained under the proposed fairness constraints with a multi-objective evolutionary search algorithm, we obtain various state-of-the-art models, e.g., FairNAS-A attains 77.5% top-1 validation accuracy on ImageNet. The models and their evaluation codes are made publicly available online http://github.com/fairnas/FairNAS .


翻译:重力共享神经结构搜索中最重要的问题之一是在预定的搜索空间内评估候选模型。 在实践中, 单发超级网被训练为评估员。 忠诚的排名当然会导致更准确的搜索结果。 但是, 目前的方法容易做出错误的判断。 在本文中, 我们证明, 它们的偏向性评价是由于超级网培训中固有的不公平。 有鉴于此, 我们提出两个层面的制约: 期望公平和严格公平。 特别是, 严格公平确保整个培训过程中所有选择区获得平等优化机会, 既不高估也不低估其能力。 我们证明这对提高模型排名的信心至关重要。 将根据拟议中的公平限制而培训的单发超级网纳入一个多目标进化搜索算法, 我们获得了各种最先进的模型, 例如, FairNAS-A在图像网上达到了77.5%的最高一级验证准确率。 这些模型及其评价代码可在网上公开查阅 http://github.com/fairnas/FairNAS。

0
下载
关闭预览

相关内容

【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
【XAUTOML】可解释自动机器学习,27页ppt
专知会员服务
62+阅读 · 2021年4月23日
专知会员服务
60+阅读 · 2020年3月19日
深度解读:小米AI实验室AutoML团队最新成果FairNAS
PaperWeekly
32+阅读 · 2019年7月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
8+阅读 · 2020年6月15日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关资讯
深度解读:小米AI实验室AutoML团队最新成果FairNAS
PaperWeekly
32+阅读 · 2019年7月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
8+阅读 · 2020年6月15日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
Top
微信扫码咨询专知VIP会员