We propose a novel anomaly detection method for echocardiogram videos. The introduced method takes advantage of the periodic nature of the heart cycle to learn different variants of a variational latent trajectory model (TVAE). The models are trained on the healthy samples of an in-house dataset of infant echocardiogram videos consisting of multiple chamber views to learn a normative prior of the healthy population. During inference, maximum a posteriori (MAP) based anomaly detection is performed to detect out-of-distribution samples in our dataset. The proposed method reliably identifies severe congenital heart defects, such as Ebstein's Anomaly or Shonecomplex. Moreover, it achieves superior performance over MAP-based anomaly detection with standard variational autoencoders on the task of detecting pulmonary hypertension and right ventricular dilation. Finally, we demonstrate that the proposed method provides interpretable explanations of its output through heatmaps which highlight the regions corresponding to anomalous heart structures.
翻译:我们建议对回声心电图视频采用新颖的异常探测方法。引入的方法利用心脏周期的周期性来学习变幻潜轨模型的不同变体。这些模型经过培训,对婴儿回声心电图视频内部数据集进行健康抽样培训,该数据集由多个室视图组成,以了解健康人群之前的规范情况。在推断过程中,根据事后异常(MAP)进行最大程度的检测,以探测数据集中的分流样本。拟议方法可靠地识别了严重的先天性心脏病缺陷,如Ebstein's Anomaly 或 Shonecomplex。此外,该模型在检测肺部高血压和右心血管膨胀的任务方面实现了优于以MAP为基础的异常检测的高级性能,其标准变异性自动演算器以探测肺部高血压和右心血管膨胀。最后,我们证明,拟议方法通过热测图提供其输出的可解释的解释性解释性解释性解释,这些结果突出与异常心脏结构相关的区域。