Integration of data from multiple omics techniques is becoming increasingly important in biomedical research. Due to non-uniformity and technical limitations in omics platforms, such integrative analyses on multiple omics, which we refer to as views, involve learning from incomplete observations with various view-missing patterns. This is challenging because i) complex interactions within and across observed views need to be properly addressed for optimal predictive power and ii) observations with various view-missing patterns need to be flexibly integrated. To address such challenges, we propose a deep variational information bottleneck (IB) approach for incomplete multi-view observations. Our method applies the IB framework on marginal and joint representations of the observed views to focus on intra-view and inter-view interactions that are relevant for the target. Most importantly, by modeling the joint representations as a product of marginal representations, we can efficiently learn from observed views with various view-missing patterns. Experiments on real-world datasets show that our method consistently achieves gain from data integration and outperforms state-of-the-art benchmarks.


翻译:在生物医学研究中,来自多种显微镜技术的数据的整合正变得越来越重要。由于显微镜平台的不统一和技术限制,对多种显微镜的这种综合分析(我们称之为观点)涉及从不完全的观察中学习,而这种综合分析则涉及从各种视觉偏差模式中学习,这具有挑战性,因为为了最佳预测力,需要适当处理所观测到的多种视觉技术内部和不同观点之间的复杂互动,以及(二)各种视觉偏差模式的观测需要灵活整合。为了应对这些挑战,我们建议对不完整的多视图观测采用深度的变异信息瓶颈(IB)方法。我们的方法是将所观测到的观点的边际和联合表达框架用于侧重于与目标相关的视觉内和视觉间互动。最重要的是,通过将联合表述作为边际表达的产物,我们可以高效率地从各种视觉偏差模式的观察观点中学习。对现实世界数据集的实验表明,我们的方法始终从数据整合和超常规基准中得益。

1
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
专知会员服务
110+阅读 · 2021年1月8日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
39+阅读 · 2020年7月27日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
58+阅读 · 2019年8月26日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
医学 | 顶级SCI期刊专刊/国际会议信息4条
Call4Papers
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Arxiv
0+阅读 · 2021年3月30日
Arxiv
1+阅读 · 2021年3月30日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
VIP会员
相关VIP内容
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
医学 | 顶级SCI期刊专刊/国际会议信息4条
Call4Papers
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Top
微信扫码咨询专知VIP会员