An outer-1-planar graph is a graph admitting a drawing in the plane so that all vertices appear in the outer region of the drawing and every edge crosses at most one other edge. This paper establishes the local structure of outer-1-planar graphs by proving that each outer-1-planar graph contains one of the seventeen fixed configurations, and the list of those configurations is minimal in the sense that for each fixed configuration there exist outer-1-planar graphs containing this configuration that do not contain any of another sixteen configurations. There are two interesting applications of this structural theorem. First of all, we conclude that every (resp.maximal) outer-1-planar graph of minimum degree at least 2 has an edge with the sum of the degrees of its two end-vertices being at most 9 (resp.7), and this upper bound is sharp. On the other hand, we show that the list 3-dynamic chromatic number of every outer-1-planar graph is at most 6, and this upper bound is best possible.
翻译:外部-1 平面图是一个图表, 承认在平面上绘制图, 使所有顶点都出现在绘图的外部区域, 以及每个边缘都位于其他边缘。 本文通过证明每个外部-1 平面图包含十七个固定配置之一, 来建立外部-1 平面图的本地结构, 而这些配置的列表是最小的, 因为每个固定配置都存在包含此配置的外部-1 平面图, 其中不含其他十六个配置 。 此结构定理有两个有趣的应用。 首先, 我们得出结论, 每一个最小度为 2 的( resp.maximal) 外部-1 平面图都有一个边缘, 其两端平面图的总和最多为 9 (resp. 7 ), 而这个上层是 锐利的。 另一方面, 我们显示每个外部-1 平面图的3 动态色谱数最多只有 6 6, 最有可能 。