In this paper, we exhibit an irreducible Markov chain $M$ on the edge $k$-colorings of bipartite graphs based on certain properties of the solution space. We show that diameter of this Markov chain grows linearly with the number of edges in the graph. We also prove a polynomial upper bound on the inverse of acceptance ratio of the Metropolis-Hastings algorithm when the algorithm is applied on $M$ with the uniform distribution of all possible edge $k$-colorings of $G$. A special case of our results is the solution space of the possible completions of Latin rectangles.
翻译:在本文中,我们展示了基于解决方案空间某些特性的双边图表边缘的不可复制的Markov链条价值$M$的彩色。我们展示了这个Markov链条的直径随着图中边缘数的线性增长。我们还证明,当算法应用在$M$上方,所有可能的边缘价值$K$彩色均匀分布时,我们的结果的一个特殊例子是拉丁矩形可能完成的解决方案空间。