We study a novel setting in Online Markov Decision Processes (OMDPs) where the loss function is chosen by a non-oblivious strategic adversary who follows a no-external regret algorithm. In this setting, we first demonstrate that MDP-Expert, an existing algorithm that works well with oblivious adversaries can still apply and achieve a policy regret bound of $\mathcal{O}(\sqrt{T \log(L)}+\tau^2\sqrt{ T \log(|A|)})$ where $L$ is the size of adversary's pure strategy set and $|A|$ denotes the size of agent's action space. Considering real-world games where the support size of a NE is small, we further propose a new algorithm: MDP-Online Oracle Expert (MDP-OOE), that achieves a policy regret bound of $\mathcal{O}(\sqrt{T\log(L)}+\tau^2\sqrt{ T k \log(k)})$ where $k$ depends only on the support size of the NE. MDP-OOE leverages the key benefit of Double Oracle in game theory and thus can solve games with prohibitively large action space. Finally, to better understand the learning dynamics of no-regret methods, under the same setting of no-external regret adversary in OMDPs, we introduce an algorithm that achieves last-round convergence result to a NE. To our best knowledge, this is first work leading to the last iteration result in OMDPs.


翻译:我们研究了在线 Markov 决策进程( OMDPs) 的新设置, 损失函数由非显眼的战略对手选择, 后者遵循的是非外部的遗憾算法。 在此环境下, 我们首先证明 MDP- Expert, 一种与不明对手运作良好的现有算法, 仍然可以应用, 并实现一个政策后悔 $\ mathcal{O} (sqrt{T\taú2\\\ sqrt{ T\log( ⁇ A ⁇ }} ) 。 其中, 美元是对手的纯策略的大小, 美元表示代理动作空间的大小 。 考虑到真实世界的游戏, 其中NEE的支持规模很小, 我们进一步提出一个新的算法: MDP- Oracle 专家( MDP- Olocle ), 实现的是 $\\\\ tqral{ t\ log} 的政策遗憾 。 ialliversal2\\ sralt{ T klog} =T\ klog 美元, $A_ molog do dress Oral ligle macle macle max le macle max 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月17日
Arxiv
0+阅读 · 2023年3月16日
Arxiv
79+阅读 · 2022年7月16日
Arxiv
10+阅读 · 2021年11月3日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员