This paper presents a new mathematical signal transform that is especially suitable for decoding information related to non-rigid signal displacements. We provide a measure theoretic framework to extend the existing Cumulative Distribution Transform [ACHA 45 (2018), no. 3, 616-641] to arbitrary (signed) signals on $\overline{\mathbb{R}}$. We present both forward (analysis) and inverse (synthesis) formulas for the transform, and describe several of its properties including translation, scaling, convexity, linear separability and others. Finally, we describe a metric in transform space, and demonstrate the application of the transform in classifying (detecting) signals under random displacements.
翻译:本文件介绍了一个新的数学信号转换,它特别适合解码与非硬性信号变位有关的信息。我们提供了一个测量理论框架,将现有的累积分布变换[ACHA 45 (2018),第3号,第616-641号]扩展至$@overline_mathbb{R ⁇ $上的任意(签名)信号。我们提出了变换的前(分析)和反(合成)公式,并描述了其若干特性,包括翻译、缩放、粘合、线性分离和其他特性。最后,我们描述了变换空间中的度度,并展示了变换在随机变换位下对(探测)信号进行分类时的应用。