Multi-object tracking in sports scenes plays a critical role in gathering players statistics, supporting further analysis, such as automatic tactical analysis. Yet existing MOT benchmarks cast little attention on the domain, limiting its development. In this work, we present a new large-scale multi-object tracking dataset in diverse sports scenes, coined as \emph{SportsMOT}, where all players on the court are supposed to be tracked. It consists of 240 video sequences, over 150K frames (almost 15\times MOT17) and over 1.6M bounding boxes (3\times MOT17) collected from 3 sports categories, including basketball, volleyball and football. Our dataset is characterized with two key properties: 1) fast and variable-speed motion and 2) similar yet distinguishable appearance. We expect SportsMOT to encourage the MOT trackers to promote in both motion-based association and appearance-based association. We benchmark several state-of-the-art trackers and reveal the key challenge of SportsMOT lies in object association. To alleviate the issue, we further propose a new multi-object tracking framework, termed as \emph{MixSort}, introducing a MixFormer-like structure as an auxiliary association model to prevailing tracking-by-detection trackers. By integrating the customized appearance-based association with the original motion-based association, MixSort achieves state-of-the-art performance on SportsMOT and MOT17. Based on MixSort, we give an in-depth analysis and provide some profound insights into SportsMOT. The dataset and code will be available at https://deeperaction.github.io/datasets/sportsmot.html.


翻译:多目标跟踪在体育场景中发挥着至关重要的作用,它可以收集运动员统计数据,并支持进一步的分析,例如自动战术分析。然而,现有的多目标跟踪基准测试对该领域的关注较少,限制了其发展。在本文中,我们提出了一个新的大规模多目标跟踪数据集,包括多种不同的体育场景,被称为 "SportsMOT ",其中应该跟踪场上的所有球员。它由 240 个视频序列组成,超过 15\times MOT17,超过 150K 帧(几乎是 MOT17 的 15 倍)和超过 1.6M 边框(3\times MOT17)从 3 个体育类别,包括篮球,排球和足球。我们的数据集具有两个关键属性:1)快速和变速运动;2)类似但可区分的外观。我们希望 SportsMOT 可以鼓励 MOT 跟踪器在基于运动关联和基于外观关联方面的促进。我们基准测试了几种最先进的跟踪器,并揭示了 SportsMOT 的主要挑战在于目标关联。为了缓解这个问题,我们进一步提出了一个新的多目标跟踪框架,称为 "MixSort ",引入了 MixFormer 类似结构作为一个辅助关联模型到流行的基于检测的跟踪器。通过将定制化的基于外观的关联与原始的基于运动的关联相结合,MixSort 在 SportsMOT 和 MOT17 上实现了最先进的性能。基于 MixSort,我们进行了深入的分析,并提供了一些深刻的见解到 SportsMOT。数据集和代码将在 https://deeperaction.github.io/datasets/sportsmot.html 上提供。

0
下载
关闭预览

相关内容

深度学习视频中多目标跟踪:论文综述
专知会员服务
92+阅读 · 2019年10月13日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
干货 | 视频显著性目标检测(文末附有完整源码)
计算机视觉战队
38+阅读 · 2019年9月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月30日
Arxiv
0+阅读 · 2023年5月30日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关VIP内容
深度学习视频中多目标跟踪:论文综述
专知会员服务
92+阅读 · 2019年10月13日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
干货 | 视频显著性目标检测(文末附有完整源码)
计算机视觉战队
38+阅读 · 2019年9月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员