项目名称: 可见及近红外宽光谱响应的高效固态量子点敏化太阳能电池
项目编号: No.21273160
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 张敬波
作者单位: 天津师范大学
项目金额: 82万元
中文摘要: 本项目研究PbS量子点敏化SnO2及 TiO2纳晶薄膜太阳能电池,利用量子尺寸效应调节PbS量子点的能带结构,使量子点的光谱吸收从太阳光谱的可见区扩展至近红外范围。同时使PbS量子点能带位置与SnO2、TiO2纳晶薄膜能级相互匹配。在选择能级匹配的空穴传输材料的基础上,研究量子点敏化半导体纳晶薄膜的光生电子包括注入、输运、复合和量子点与空穴传输材料之间的光生空穴转移等多步动力学过程和机制。采用纳晶薄膜的离子掺杂、微结构优化设计、钝化量子点敏化纳晶薄膜的表面缺陷和改变空穴传输材料的种类和空穴传输层制备方法等技术方法和手段,优化多步动力学过程参数,达到提高光生电子注入效率、膜内电子输运速度和空穴转移速度,减少光生电荷复合的目的。研制结构为半导体纳晶薄膜/量子点/空穴传输层的固态量子点敏化太阳能电池,在实现高效采集太阳光能和优化动力学参数的基础上,提高光电流量子效率,使光电转换效率达到4%以上。
中文关键词: 量子点;量子点敏化太阳能电池;光谱响应区间扩展;光生电荷动力学过程;光电性能
英文摘要: PbS quantum dots sensitized SnO2 (TiO2) nanocrystalline thin film solar cells will be fabricated and their photoresponse to solar spectrum is wished to be expanded from the visible region to the near infrared region by adjusting the band structure of PbS quantum dots according to quantum size effect. At the same time, the band position of PbS quantum dots is needed to well match the energy band of SnO2 (TiO2) nanocrystals. The kinetic processes of photogenerated electrons in quantum dots sensitized nanocrystalline thin film including injection, transport and recombination, as well as the kinetic process of photogenerated holes presenting in the quantum dots/hole-transpporting materials interface will be studied in detail based on the selection of hole-transporting materials with a suitable HOMO position. These kinetic processes will be optimized by ions doping and microstructure designing to the nanocrystalline thin film, passivation of surface defects in quantum dots sensitized nanocrystalline thin film, selection of hole-transporting materials and their deposition method. By these hard works, the injection efficiency of photogenerated electrons, the transport speed of electrons in the nanocrystalline thin film and the transfer rate of holes will be increased, and thus the recombination of photogenerated charge
英文关键词: Quantum dots;Quantum dot-sensitized solar cell;Expanding photoresponse region;Kinetic processes of photogenerated charges;Photoelectrical properties