We study countably infinite stochastic 2-player games with reachability objectives. Our results provide a complete picture of the memory requirements of $\varepsilon$-optimal (resp. optimal) strategies. These results depend on whether the game graph is infinitely branching and on whether one requires strategies that are uniform (i.e., independent of the start state). Our main result is that $\varepsilon$-optimal (resp. optimal) Maximizer strategies in infinitely branching turn-based reachability games require infinite memory. This holds even under very strong restrictions. Even if all states have an almost surely winning Maximizer strategy, strategies with a step counter plus finite private memory are still useless. Regarding uniformity, we show that for Maximizer there need not exist positional uniformly $\varepsilon$-optimal strategies even in finitely branching turn-based games, whereas there always exists one that uses one bit of public memory, even in concurrent games with finite action sets.
翻译:我们用可达目标来研究无限的随机2玩家游戏。 我们的结果提供了$\varepsilon$- 最佳( 最佳) 战略的完整记忆要求。 这些结果取决于游戏图是否具有无限的分支和是否需要统一( 独立于起始状态) 的战略。 我们的主要结果是, $\ varepsilon$- 最优化( 最佳) 的无限分支化的可达性游戏需要无限的内存。 这甚至存在于非常严格的限制之下。 即使所有的国家都有几乎肯定能够赢得最大化战略的策略, 具有一步反向和有限私人记忆的战略仍然毫无用处。 关于统一性, 我们表明,对于最优化的游戏来说,即使是在有限分支化的回合式游戏中, 也不需要统一定位的 $\ varepslon- 最佳策略, 而总有一个使用一点公共记忆的策略, 即使是同时使用有限动作组合的游戏 。