Existing graph-network-based few-shot learning methods obtain similarity between nodes through a convolution neural network (CNN). However, the CNN is designed for image data with spatial information rather than vector form node feature. In this paper, we proposed an edge-labeling-based directed gated graph network (DGGN) for few-shot learning, which utilizes gated recurrent units to implicitly update the similarity between nodes. DGGN is composed of a gated node aggregation module and an improved gated recurrent unit (GRU) based edge update module. Specifically, the node update module adopts a gate mechanism using activation of edge feature, making a learnable node aggregation process. Besides, improved GRU cells are employed in the edge update procedure to compute the similarity between nodes. Further, this mechanism is beneficial to gradient backpropagation through the GRU sequence across layers. Experiment results conducted on two benchmark datasets show that our DGGN achieves a comparable performance to the-state-of-art methods.
翻译:以图形网络为基础的现有微小学习方法通过卷发神经网络(CNN)获得节点之间的相似性。然而,CNN是为带有空间信息而不是矢量节点特征的图像数据设计的。在本文中,我们提议了一个基于边缘标签的定向门形图形网络(DGGGN),用于几发学习,它利用门形的重复单元来暗中更新节点之间的相似性。DGGN由一个门形节点汇总模块和一个改进的门形常规单元(GRU)组成。具体地说,节点更新模块采用了使用边缘特征激活的门形机制,形成一个可学习的节点汇总进程。此外,在边缘更新程序中使用了改进的GRU单元格来计算节点之间的相似性。此外,这一机制有利于通过GRU序列跨层的梯度反向调整。在两个基准数据集上进行的实验结果显示,我们的GGGN实现了与最新方法相似的性能。