We develop a universal model based on the classical complex matter fields that allow the optimal mapping of many real-life NP-hard combinatorial optimisation problems into the problem of minimising a spin Hamiltonian. We explicitly formulate one-to-one mapping for three famous problems: graph colouring, the travelling salesman, and the modular N-queens problem. We show that such a formulation allows for several orders of magnitude improvement in the search for the global minimum compared to the standard Ising formulation. At the same time, the amplitude dynamics escape from the local minima.
翻译:我们开发了一个基于古典复杂物质领域的通用模型,可以将许多真实的NP硬组合式优化问题优化到将一个旋转的汉密尔顿人最小化的问题中。 我们明确地为三个著名的问题绘制一对一的映射图:图形颜色、流动销售员和模块式N-queens问题。 我们表明,这种配方允许在寻找全球最低值时比标准的Ising配方改进几个数量级。 与此同时,振幅动态从本地迷你中逃脱出来。