For the misspecified linear Markov decision process (MLMDP) model of Jin et al. [2020], we propose an algorithm with three desirable properties. (P1) Its regret after $K$ episodes scales as $K \max \{ \varepsilon_{\text{mis}}, \varepsilon_{\text{tol}} \}$, where $\varepsilon_{\text{mis}}$ is the degree of misspecification and $\varepsilon_{\text{tol}}$ is a user-specified error tolerance. (P2) Its space and per-episode time complexities remain bounded as $K \rightarrow \infty$. (P3) It does not require $\varepsilon_{\text{mis}}$ as input. To our knowledge, this is the first algorithm satisfying all three properties. For concrete choices of $\varepsilon_{\text{tol}}$, we also improve existing regret bounds (up to log factors) while achieving either (P2) or (P3) (existing algorithms satisfy neither). At a high level, our algorithm generalizes (to MLMDPs) and refines the Sup-Lin-UCB algorithm, which Takemura et al. [2021] recently showed satisfies (P3) in the contextual bandit setting.
翻译:对于金等人的错误指定的线性马尔科夫决定程序(MLMDP)模式(MLMDP),我们建议使用一种具有三种理想属性的算法。 (P1),在以K$=max = \\ varepsilon}text{mis}},\ varepsilon ⁇ t{tr ⁇ } ⁇ {tol}$,其中$\varepsilon{text{tol}$是误标度和$\varepsilon{text{tol}$是用户指定的错误容忍度。 (P2),其空间和每段时间复杂性仍与美元\rightrow\ infty $(P3)相交错。(P3),它并不要求用$\varepslectr@text{musl{misl} 来作为投入。据我们所知,这是第一个满足所有三种属性的算法。对于 $\varepselplón{t{t{t{t{t}具体选择来说,我们还改进了现有的遗憾界限(直到记录因素),同时实现(P2 或(P3) (现有的算算)。