We introduce a novel model-theoretic framework inspired from graph modification and based on the interplay between model theory and algorithmic graph minors. We propose a new compound logic operating with two types of sentences, expressing graph modification: the modulator sentence, defining some property of the modified part of the graph, and the target sentence, defining some property of the resulting graph. In our framework, modulator sentences are in monadic second-order logic and have models of bounded treewidth, while target sentences express first-order logic properties along with minor-exclusion. Our logic captures problems that are not definable in first order logic and, moreover, may have instances of unbounded treewidth. Also, it permits the modelling of wide families of problems involving vertex/edge removals, alternative modulator measures (such as elimination distance or G-treewidth), multistage modifications, and various cut problems. Our main result is that, for this compound logic, model checking can be done in quadratic time. This algorithmic meta-theorem encompasses, unifies, and extends all known meta-algorithmic results on minor-closed graph classes. Moreover, all derived algorithms are constructive and this, as a byproduct, extends the constructibility horizon of the algorithmic applications of the Graph Minors theorem of Robertson and Seymour. The proposed logic can be seen as a general framework to capitalize on the potential of the irrelevant vertex technique.
翻译:我们引入了一个由图表修改和模型理论与算法图未成年人之间相互作用所启发的新模型理论框架。我们提出一个新的复合逻辑逻辑,用两种类型的句子运作,表示图形修改:调制句,界定图中修改部分的某些属性,目标句,界定由此而来的图的某些属性。在我们的框架中,调制句采用月经第二阶逻辑,并有被捆绑的树枝模型,而目标句则表示第一阶逻辑特性,加上细度排除。我们的逻辑捕捉了在一阶逻辑中无法解开的问题,此外,还可能存在未受限制的树宽度。此外,它允许模拟涉及顶部/顶端清除、替代调制措施(如消除距离或G-树枝)、多阶修改和各种剪切问题的广泛问题。我们的主要结果就是,对于这一复合逻辑,模型检查可以在二次排除时进行。这个算法的元理论包含、统一和扩展所有已知的元值逻辑线,并且可能存在未受限制的树边线。此外,它允许将所有已知的元-直位算法和图级的模型,作为整个图层的图层的模型的模型,可以被理解地算法分析,作为整个的图的模型的模型的模型的模型,作为整个的模型的模型的模型的模型的模型的模型,可以被理解。