We present a new concept called Game Mechanic Alignment theory as a way to organize game mechanics through the lens of systemic rewards and agential motivations. By disentangling player and systemic influences, mechanics may be better identified for use in an automated tutorial generation system, which could tailor tutorials for a particular playstyle or player. Within, we apply this theory to several well-known games to demonstrate how designers can benefit from it, we describe a methodology for how to estimate "mechanic alignment", and we apply this methodology on multiple games in the GVGAI framework. We discuss how effectively this estimation captures agential motivations and systemic rewards and how our theory could be used as an alternative way to find mechanics for tutorial generation.


翻译:我们提出了一个名为“游戏机械协调理论”的新概念,作为通过系统性奖赏和代理动机透镜来组织游戏机械学的一种方法。 通过脱钩玩家和系统性影响,可以更好地确定机械学在自动辅导生成系统中使用,该系统可以为特定的游戏风格或玩家量身定制辅导。 在其中,我们将这一理论应用于几个众所周知的游戏,以展示设计师如何从中得益,我们描述了如何估算“机械协调”的方法,我们在GVGAI框架中将这一方法应用于多个游戏。我们讨论了这一估算如何有效地捕捉到代理动机和系统性奖赏,以及如何将我们的理论用作寻找代教义的机械的替代方法。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
63+阅读 · 2021年8月20日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年10月9日
How Can AI Recognize Pain and Express Empathy
Arxiv
1+阅读 · 2021年10月8日
Arxiv
0+阅读 · 2021年10月7日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关VIP内容
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
63+阅读 · 2021年8月20日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
0+阅读 · 2021年10月9日
How Can AI Recognize Pain and Express Empathy
Arxiv
1+阅读 · 2021年10月8日
Arxiv
0+阅读 · 2021年10月7日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
45+阅读 · 2019年12月20日
Top
微信扫码咨询专知VIP会员