Motion capture (MoCap) through tracking retroreflectors obtains high precision pose estimation, which is frequently used in robotics. Unlike MoCap, fiducial marker-based tracking methods do not require a static camera setup to perform relative localization. Popular pose-estimating systems based on fiducial markers have lower localization accuracy than MoCap. As a solution, we propose Mobile MoCap, a system that employs inexpensive near-infrared cameras for precise relative localization in dynamic environments. We present a retroreflector feature detector that performs 6-DoF (six degrees-of-freedom) tracking and operates with minimal camera exposure times to reduce motion blur. To evaluate different localization techniques in a mobile robot setup, we mount our Mobile MoCap system, as well as a standard RGB camera, onto a precision-controlled linear rail for the purposes of retroreflective and fiducial marker tracking, respectively. We benchmark the two systems against each other, varying distance, marker viewing angle, and relative velocities. Our stereo-based Mobile MoCap approach obtains higher position and orientation accuracy than the fiducial approach. The code for Mobile MoCap is implemented in ROS 2 and made publicly available at https://github.com/RIVeR-Lab/mobile_mocap.
翻译:动捕通过反射器跟踪获取高精度姿态估计,经常在机器人领域使用。与动捕不同,基于标记的跟踪方式不需要静态相机设置,以进行相对定位。基于标记的流行姿态估计系统相对定位精度低于动捕。为解决这个问题,我们提出了移动式球衣动捕,它采用廉价的近红外相机进行动态环境下的精确定位。我们提出了一种反射镜反射器特征检测器,可以执行 6-DoF(六自由度)跟踪,并在最小化相机曝光时间的情况下进行操作,以减少运动模糊。为了在移动机器人设置中评估不同的定位技术,我们将我们的移动式球衣动捕系统与标准RGB相机分别安装在精密控制的线性轨道上,以进行反射式和标记式跟踪。我们根据距离、标记视角和相对速度变化对两个系统进行基准测试。我们的基于立体视觉的移动式动捕方法比标记法实现了更高的位置和方向精度。Mobile MoCap 的代码在 ROS 2 中实现,并在 https://github.com/RIVeR-Lab/mobile_mocap 上公开。