We introduce a neural network framework, utilizing adversarial learning to partition an image into two cuts, with one cut falling into a reference distribution provided by the user. This concept tackles the task of unsupervised anomaly segmentation, which has attracted increasing attention in recent years due to their broad applications in tasks with unlabelled data. This Adversarial-based Selective Cutting network (ASC-Net) bridges the two domains of cluster-based deep learning methods and adversarial-based anomaly/novelty detection algorithms. We evaluate this unsupervised learning model on BraTS brain tumor segmentation, LiTS liver lesion segmentation, and MS-SEG2015 segmentation tasks. Compared to existing methods like the AnoGAN family, our model demonstrates tremendous performance gains in unsupervised anomaly segmentation tasks. Although there is still room to further improve performance compared to supervised learning algorithms, the promising experimental results shed light on building an unsupervised learning algorithm using user-defined knowledge.
翻译:我们引入了神经网络框架, 利用对抗性学习将图像分割成两块, 其中一条切入到用户提供的参考分布中。 这个概念涉及不受监督的异常分化任务, 近几年来,由于在使用无标签数据的任务中应用广泛, 这个问题引起了越来越多的关注。 这个以反向为基础的选择性切除网络( ASC-Net) 连接了基于集群的深层次学习方法和基于对抗的异常/新颖检测算法的两大领域。 我们评估了这个关于BRATS脑分离、 LITS 肝脏分化和MS-SEG2015 分化任务的不受监督的学习模型。 与像 AnoGAN 家族这样的现有方法相比, 我们的模式展示了在未经监督的异常分化任务中的巨大绩效收益。 尽管与受监督的学习算法相比仍有进一步改进空间, 但有希望的实验结果为利用用户定义的知识建立一种不受监督的学习算法提供了线索。