In this paper, we employ the persistent homology (PH) technique to examine the topological properties of fractional Gaussian noise (fGn). We develop the weighted natural visibility graph algorithm, and the associated simplicial complexes through the filtration process are quantified by PH. The evolution of the homology group dimension represented by Betti numbers demonstrates a strong dependency on the Hurst exponent ($H$). The coefficients of the birth and death curve of the $k$-dimensional topological holes ($k$-holes) at a given threshold depend on $H$ which is almost not affected by finite sample size. We show that the distribution function of a lifetime for $k$-holes decays exponentially and the corresponding slope is an increasing function versus $H$, and more interestingly, the sample size effect completely disappears in this quantity. The persistence entropy logarithmically grows with the size of the visibility graph of a system with almost $H$-dependent prefactors. On the contrary, the local statistical features are not able to determine the corresponding Hurst exponent of fGn data, while the moments of eigenvalue distribution ($M_{n}$) for $n\ge1$ reveal a dependency on $H$, containing the sample size effect. Finally, the PH shows the correlated behavior of electroencephalography for both healthy and schizophrenic samples.


翻译:在本文中,我们使用持久性同质学(PH)技术来检查分数高斯噪音(fGn)的地形特性。我们开发了加权自然可见度图表算法,而PH则通过过滤过程量化了相关的简易复合体。Betti数字所代表的同质组的演化表明对Hurst Exponent(H美元)的高度依赖性很强。在某一阈值上,以美元为单位的地表洞(k$-洞)的出生和死亡曲线的系数取决于美元,而美元几乎不受有限样本大小的影响。我们表明,美元洞的寿命寿命周期的分布功能会急剧衰减,相应的斜度是相对于$的日益增强的功能。更有趣的是,以Bettiphn数字表示的样本大小完全消失。随着一个几乎以美元为单位的系统可见度图形的大小增长而恒定。相反,当地统计特征无法确定FGncial-H$的直径值的直径值值值值值,同时显示FGn-Q-H值的正值的正值的直径值数据。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
124+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月3日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员