We formalize the univariate fragment of Ben-Or, Kozen, and Reif's (BKR) decision procedure for first-order real arithmetic in Isabelle/HOL. BKR's algorithm has good potential for parallelism and was designed to be used in practice. Its key insight is a clever recursive procedure that computes the set of all consistent sign assignments for an input set of univariate polynomials while carefully managing intermediate steps to avoid exponential blowup from naively enumerating all possible sign assignments (this insight is fundamental for both the univariate case and the general case). Our proof combines ideas from BKR and a follow-up work by Renegar that are well-suited for formalization. The resulting proof outline allows us to build substantially on Isabelle/HOL's libraries for algebra, analysis, and matrices. Our main extensions to existing libraries are also detailed.
翻译:我们正式确定了伊莎贝尔/HOL中第一阶真正算术的Ben-Or、Kozen和Reif(BKR)决定程序(BKR)的单向计算片段。 BKR的算法具有很好的平行潜力,并被设计用于实践。它的关键洞察力是一个聪明的循环程序,它计算出一套所有统一的输入集的单向多面体符号分配,同时仔细管理中间步骤,以避免从天真地罗列所有可能的签名任务中发生指数性爆炸(这种洞察对于单向和一般案件都至关重要)。我们的证据将BKR的想法和Renegar的后续工作结合起来,这些想法很适合正规化。由此产生的证据概要使我们能够在Isabel/HOL的图书馆中大量建立代数、分析和矩阵。我们对现有图书馆的主要扩展内容也是详细的。