Adversarial Robustness Distillation (ARD) is a novel method to boost the robustness of small models. Unlike general adversarial training, its robust knowledge transfer can be less easily restricted by the model capacity. However, the teacher model that provides the robustness of knowledge does not always make correct predictions, interfering with the student's robust performances. Besides, in the previous ARD methods, the robustness comes entirely from one-to-one imitation, ignoring the relationship between examples. To this end, we propose a novel structured ARD method called Contrastive Relationship DeNoise Distillation (CRDND). We design an adaptive compensation module to model the instability of the teacher. Moreover, we utilize the contrastive relationship to explore implicit robustness knowledge among multiple examples. Experimental results on multiple attack benchmarks show CRDND can transfer robust knowledge efficiently and achieves state-of-the-art performances.


翻译:强力蒸馏(ARD)是提高小型模型稳健性的一种新颖方法。 与一般的对抗性培训不同,它的强力知识转移不那么容易受模型能力的限制。 但是,提供强力知识的教师模式并不总是作出正确的预测,干扰学生的强力表现。 此外,在以往的ARD方法中,强力完全来自一对一的模仿,忽视了实例之间的关系。 为此,我们提议了一种新型结构化的ARD方法,称为 " 对抗性关系蒸馏(CRDND) " 。我们设计了一个适应性补偿模块,以模拟教师的不稳定性。此外,我们利用对比性关系来探索多个例子之间的隐含强力知识。 多起攻击基准的实验结果显示,CRDND能够有效地转让强力知识并实现最先进的业绩。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
10+阅读 · 2021年2月26日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
13+阅读 · 2019年11月14日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关论文
Arxiv
10+阅读 · 2021年2月26日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
13+阅读 · 2019年11月14日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
11+阅读 · 2018年3月23日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员